California Energy Commission --Committee Workshop on Clean Coal Technology and Carbon Capture and Storage

Meeting GHG Reduction Targets in California with Biofuels and Carbon Sequestration

John Kadyszewski Winrock International May 29, 2007

Summary

- Terrestrial Sequestration Options for California
 - Afforestation
 - Conservation Management
 - Managing Fires
- Biofuels Options for California
- Geologic Sequestration of CO₂ Associated with Biofuels Production in California

Plants and the Atmosphere

- Plants have proven ability to remove CO₂ from the atmosphere
- Plants can be converted to biofuels with CO₂ byproduct
 - → geologic sequestration of byproduct CO₂ is the only costeffective option available to reduce atmospheric concentrations of CO₂

Carbon Cycle graphic courtesy http://www.fas.org/irp/imint/docs/rst/Sect16/Sect16 4.html

Can Biofuels and Sequestration Make a Difference?

Ethanol

- 424 million gallons per year producing ~800,000 metric tons of CO₂ available for geologic sequestration
- Reducing hazardous fuels
 - 16 million acres at high/very high risk of fire
 - Treating 15% would yield ~ 48 million metric tons of fuel
 - Thermochemical pathway to biofuel would yield ~ 132 million gallons of biofuel per year for 20 years with ~ 1 million metric tons of CO₂ available for geologic sequestration
- Terrestrial Sequestration
 - Afforestation of 15% of available rangelands over 40 years would sequester ~ 11 million metric tons of CO₂ per year

How Do Ecosystems Sequester Carbon?

0.24—1.8 t CO₂/ha.yr

Where is Carbon Sequestered?

- Live biomass
 - Trees
 - Understory
 - Roots
- Dead biomass
 - Standing
 - Down
 - Coarse
 - Fine
- Wood products
- Soil

"Carbon Pools"

Carbon Accumulation

Tons of carbon

California Annual Emissions and Removals by Cause of Change for 1994-2000

MMTCO ₂ /yr	Forests	Rangelands
Fire	-1.55	-0.14
Harvest	-1.40	-0.03
Development	-0.01	-0.004
Other/Unverified	-0.79	-0.10
Regrowth	+10.96	+0.46

Estimating Terrestrial Carbon Sequestration for California

- Identified options for:
 - Rangelands
 - Forests
 - Agriculture
- Estimated:
 - Area available—how much and where
 - Spatial modeling and FIA data base
 - Amount of carbon sequestration over 20, 40, and 80 year periods
 - Costs (opportunity costs, conversion costs, maintenance costs, and measuring costs)

Primary Terrestrial Sequestration Findings

- Afforestation provides the largest terrestrial sequestration opportunity for California
- Large areas of grazing land suitable for afforestation can be found
- Conservation and changes in management practices on forest lands can sequester additional carbon
- Methodologies being developed to quantify potential sequestration from changing fire management practices on forest lands

Afforestation

- Convert agricultural or grazing land back to forest
 - Return to native forest
 - Convert to forest land for timber production

Mixed Conifers

Potential Carbon Accumulation in Conifer and Hardwood Forests

Magnitude and Cost of Afforestation

Afforestation of grazing lands provides the most carbon and at the least cost

Quantity of C —MMT CO 2		Area available —M acres				
Activity	20 yr	40 yr	80 yr	20 yr	40 yr	80 yr
Forest management						
Lengthen rotat	tion					
< \$13.6	2.2-3.5			0.31		
Increase riparian buffer -width						
<\$13.6	3.9	1 (permane	ent)		0.044	
Grazing lands						
Afforestation						
<\$13.6	887	3,256	5,639	12.03	17.79	20.76
< \$2.7	33	1,610	4,569	0.20	5.68	13.34

Conservation and Forest Management

- Stop forest conversion to non-forest
- Increase carbon stocks within existing forests
- Sierra Mixed Conifer (150 year old forest)
 - 575 tCO₂/acre
- Redwood (150 year old forest)
 - 730 tCO₂/acre

Total area burned in 1990-2004 = 5.5 million acres

Emissions from fires during period ~ 26 MMT CO₂ plus other GHGs

Potential Sequestration Benefits from Improved Fire Management

Source: Dr. Sam Sandberg, USDA Forest Service PacificWildland Fire Sciences Laboratory

- Reduce loss of carbon stocks from large trees, litter and soil
- Reduce area burned
- Maintain carbon accumulation rates during recovery
- Reduce non-CO₂ GHG emissions
- Avoid ecosystem-changing fires
- Offset fossil fuel emissions

Photos: Dr. Sam Sandberg, USDA Forest Service Pacific Wildland Fire Sciences Laboratory

Not all fires are the same

California Statewide Analysis

Fire as a cause of canopy cover change:

- 18% of total change in North Coast region
- 12% in Cascade Northeast region
- 47% in Northern Sierra

Source: CDF-FRAP LCMMP

What Happens to Carbon Stocks in a Fire?

CA forests at high/ very high risk of fire that could benefit from treatment = 16.2 million acres

Estimated net emissions from these forests if they burned range from 80 - 185 t CO₂/ha)

About 2.2 million acres currently meet constraints for treatment

Constraints: Slope, yarding distance, block size and distance to biomass plant

Cost Equation

- Improve economics of fuel breaks and ladder fuel reduction
- Find highest and best use for all material generated
- Shift resources from fire suppression to fire prevention
- Improve incentives for fuel reduction, maintenance, postfire salvage and restoration

Can carbon markets contribute to a solution?

Sequestration Issues

- Baselines
- Permanence
- Additionality
- Leakage
 - Activity-shifting
 - Market-based

Biofuels Options

- Lipid or Oleo Chemical
 - Vegetable oils
 - Animal fats
- Biochemical
 - Sugars to ethanol
 - Cellulose to ethanol
- Thermochemical
 - Syngas with catalysts

Several Biofuel Options Also Yield CO₂

Liquid Fuels

Biological Fermentation (i.e. ethanol)

Thermochemical (w/ F-T processing)

Electricity

Simple Combustion

Biogas Digestion

Oxyfuel Combustion

Gasification (IGCC)

Co-firing biomass with fossil fuel (i.e. coal)

Rhodes and Keith 2005, "Engineering economic analysis of biomass IGCC with CCS"

California Ethanol Plants

Two large operating plants in California:

Goshen: 25 MMgyMadera: 35 MMgy

- Five additional plants under development with additional 340 MMgy
- BlueFire 24 MMgy cellulosic ethanol from waste plant in Corona, CA
- CO₂ production from 424 million gallon/yr plant will be about 800,000 mt of CO₂ per year (4.2 lbs CO₂ per gallon ethanol)

Pacific Ethanol Madera Refinery

Courtesy: Pacific Ethanol

Ethanol Locations in California

- Existing ethanol facilities are located near potential geologic sinks...
- ... as are proposed plants

U.S. Ethanol Biorefinery Locations

Ethanol Fermentation Gas

Component	Concentration	
Carbon Dioxide	> 99.0% by volume	
Water	No free water	
Nitrogen	< 150 ppmv	
Oxygen	< 30 ppmv	
Total Hydrocarbons**	< 1000 ppmv as Methane	
Total Volatile Organic Compounds (not including ethanol)	< 10 ppmv	
Ethanol	< 100 ppmv	
Aldehydes	< 5.0 ppmv	
Benzene	< 0.01 ppmv	
Hydrogen Sulfide	< 0.1 ppmv	
Carbonyl Sulfide	< 0.1 ppmv	
Total Sulfur (as H2S)	< 1.0 ppmv	
Residual foreign matter***	< 10.0 ppmw	
Temperature	Equal to or less than 85° F	
Pressure	> 1.0 psig	

Markets for CO₂

- Current global use of CO₂ in the merchant market is about 20 million t/yr
- Total U.S. consumption of CO₂ about 8 million t/yr (does not include EOR or other captive markets)
 - Approximately 70% goes to the food and beverage industry
 - CO₂ associated with ethanol exceeded **11.5 million** t in 2005
 - Price in the merchant market ranges from \$30-120/ton delivered depending on the region
 - Raw gas ranges from \$3-25/ton also depending on region

Thermochemical Biorefinery

- Thermal process to make syngas from wood and agricultural residues that can then be converted to liquid fuels using catalysts
- Pulp and Paper Industry Agenda 20/20
- Potlatch Feasibility Study for Cypress Bend, Arkansas
 - Integrated facility supplies heat and power for mill
 - Yield: 50-55 gallons per dry ton
 - With oxygen-blown gasifier, also produces concentrated CO₂ stream
 - 1800 ton per day plant could produce about 250,000 tons CO₂ per year

Potlatch Biorefinery Schematic

U. S. Biomass Energy Experience

Electricity from wood residues:

312 plants with 6,585 MWe capacity

Heat from wood residues:

80% of wood energy use by forest product companies is heat or steam in 3000+ plants

- Cost to produce power
 - \$0.05/kWh with free fuel on site
 - \$0.09/kWh with fuel at \$40/ton

Feedstocks

- Bioenergy Plan for California
 - 30 million dry tons available
 - 4 MDT used today at 28 power plants
 - Ag 29% -- > 50% animal manure
 - Forest 45% -- > 50% slash & thinnings
 - MSW 26%

Biopower: Advanced Combustion Systems that Enable Geologic Sequestration

- The same IGCC processes developed for coal and gas can be used for biomass
- Oxygen-blown combustion or gasification systems could produce power from biomass fuels with relatively pure CO₂ emission streams
- Prototypes not likely to be ready for a number of years

Heat vs Power vs Liquid Fuels

- Heat for thermal applications
 - Each \$10 per ton fuel adds \$0.63/million
 BTUs
- Power generation
 - Each \$10 per ton fuel cost adds \$0.01/kWh
- Liquid fuels
 - Each \$10 per ton fuel cost adds \$0.10/gallon

Advanced Biomass Power Generation

Fuel requirements

- -- Assuming Heat Rate 11,000 BTU/kWh
 - -- Capacity Factor 80%

Power Output	Biomass Fuel Required
30 MW	212,000 MT
50 MW	353,000 MT
80 MW	565,000 MT

Potential Associated Terrestrial Sequestration

-- Assuming conversion to forest with 20 or 40 year rotations

Power Output	Land Required	Carbon Value after 40 yrs at \$10/mtCO ₂	
30 MW	53,000 acres	\$12.8 Million	
50 MW	89,000 acres	\$21.6 Million	
80 MW	142,000 acres	\$34.6 Million	

Conclusions

- California can increase terrestrial sequestration by more than 3 billion tons over the next 40 years
- California can reduce net CO₂ emissions from the transportation sector with a proactive program to develop biofuels production in the state linked with geologic sequestration
- Carbon capture and storage can be implemented for ethanol produced in the state
 - minimal additional capital expenditure for carbon capture and storage
 - existing and proposed ethanol production facilities are near promising geologic sequestration sites
- New biofuel and biopower technologies are also promising candidates for carbon capture and storage

Sponsors

- Electric Power Research Institute
- California Energy Commission PIER Program
- U.S. Department of Energy
- Potlatch Corporation
- Arkansas Energy Office
- California Department of Forestry
- U.S. Department of Agriculture

